How PEMF Therapy Works

Many benefits of Pulsed Electro-Magnetic Field ("PEMF") therapy have been demonstrated through more than 2,000 University level double-blind medical studies done in many countries with many different PEMF therapy devices. Some of the positive effects of PEMF therapy were well established by the mid 1900's. The first commercially produced low power PEMF devices entered the market in the early 1900s. These were used for studies and experimentation in healing and cellular wellness. They were sold to both consumers and as medical devices to doctors. The first commercially produced high power PEMF devices entered the market around 1975. They focused on muscle, nerve, tendon, ligament and cartilage health, on reducing pain and on regeneration. Medical PEMF therapy has been accepted in many countries around the world. The US FDA accepted the use of PEMF devices in the healing of non-union bone fractures in 1979, urinary incontinence and muscle stimulation in 1998, and depression and anxiety in 2006. Israel has accepted the use of PEMF devices in for migraine headaches. Canada has accepted PEMF devices for several uses. The European Union has many acceptances for the use of PEMF therapy in many areas including healing and recovery from trauma, degeneration and the treatment of the pain associated with these conditions.

Differences in PEMF Therapy Devices

- **Power Level**
The magnetic energy produced by the various PEMF devices can be as little as that of the Earth's magnetic field to more than 10,000 times as powerful. The lower power devices are generally used for cellular health and bone healing. The higher power devices are generally used for recovery of trauma from accidents, sports injuries and surgery, as well as for control and improvement of degenerative diseases. Both low power and high power devices help reduce pain, but the higher power devices are more effective in doing so.
- **Continuous or Pulsed medical Waveform**
Although there are exceptions in both types, most low power PEMF devices have a continuous waveform while most high power PEMF devices have a pulsed waveform.
- **Shape of Waveform**
The continuous waveform PEMF devices can produce a square, a saw tooth or a sine wave. The pulsed output PEMF devices usually produce a biphasic sine wave.
- **Control of Frequency**
Many low power PEMF devices have preset frequencies to choose from according to the manufacturers' own different theories. Most high power PEMF devices have a user variable control of the frequency.
- **Duration of Treatment**
Depending on the power level of the PEMF device, the treatment duration can be from three minutes to hours.

Primary Benefits of High Power PEMF
Clinical evidence shows that PEMF therapy reduces pain associated with trauma from accidents, sports injuries, surgeries and burns as well as from disease and degeneration.

PEMF therapy improves these conditions in many different ways that include mechanical, electrical, chemical, and magnetic processes within the cells of the body. In 1995, Siskin and Walker provided a summary of clinical results on soft tissue damage. They observed no adverse effects and the following positive effects were reported:

- Decreased pain
- Reduced inflammation
- Increased range of motion
- Faster functional recovery
- Reduced muscle loss after surgery
- Increased tensile strength in ligaments
- Faster healing of skin wounds
- Enhanced capillary formation
- Acceleration of nerve regeneration
- And decreased tissue necrosis.

In the “Therapeutic effects of pulsed magnetic fields on joint diseases”, Bassett C. (Bioelectric Research Center, Columbia University New York) applied time-varying pulsed magnetic fields designed to induce voltages similar to those produced normally during the dynamic mechanical deformation of connective tissues in an effort to control cellular function and understand the mechanism of PEMF treatment and concluded: “As a result, a wide variety of challenging musculoskeletal disorders has been treated successfully over the past two decades. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy”.

The Dynamics of Pain and PEMF Therapy
For most individuals, aside from the multiple benefits of the therapy, one of the most relevant effects of PEMF therapy is the improvement of painful conditions regardless of their origin. During the last 100 years, theories of pain mechanism have evolved from specificity and summation models to the popular gate control theory. The latter pain theory, proposed by Melzack/Wall/Casey (Wall and Melzack, 1989) has become the most important development in the field of pain management. Pain perception is no longer a straightforward afferent transmission of pain signal. In biology, signal transduction is a mechanism that converts a mechanical or chemical stimulus to a cell into a specific cellular response. Signal transduction starts with a signal to a receptor, and ends with a change in cell behavior. Transmembrane receptors move across the cell membrane, with half of the receptor outside the cell and the other half inside the cell. The signal, such as a chemical signal, binds to the outer half of the receptor, which changes its shape and conveys another signal inside the cell. Sometimes there is a long cascade of signals, one after the other. Eventually, the signal creates a change in the cell, either in the DNA of the nucleus or the cytoplasm outside the nucleus.
In the chronic pain state, pain signal generation can actually occur in the central nervous system without peripheral noxious stimulation. In pain management, modulation of the pain signal transmission is a far better choice than neural destruction, and that can be achieved with PEMF. Scientific evidence shows that acute persistent pain eventually sensitizes wide dynamic neurons in the dorsal horn of the spinal cord, the wind-up phenomenon, constituting the basis of developing chronic pain syndromes (Kristensen, 1992). Persistent and excessive pain has no biological good or necessary function. It is actually harmful to our well-being. Therefore, pain needs to be treated as early and as completely as possible and not to be left alone (Adams, et al 1997).

The primary symptom in most patients with disorders affecting the soft tissue is pain. In many patients, daily activities are limited as pain causes a restriction of the range of movements. Causes of soft tissue pain can be depicted as musculo-skeletal, neurologic, vascular, and referred visceral-somatic or articular (Cailliet, 1991). Early reports of applying electrical current to treat pain date back to before 1800 (Ersek, 1981).

PEMF therapy has successfully been used for the control of pain associated with rotator cuff tendinitis, multiple sclerosis, carpal tunnel syndrome, and peri-arthritis (Battisti et al, 1998; Lecaire et al, 1991). An improvement was observed in 93% of patients suffering from carpal tunnel pain and in 83% in cases of rotator cuff tendinitis. PEMF therapy was also used for treatment of migraine, chronic pelvic pain, neck pain, and whiplash injuries (Rosch et al, 2004).

PEMF Therapy Reduces Pain

Many studies have demonstrated the positive effects of PEMF therapy on patients with pain, even as opposed to receiving traditional treatment as well as against a placebo group getting no treatment. Some studies focused on the rapid, short-term relief while others demonstrate the long-term effects. The effectiveness of PEMF therapy has been demonstrated in a wide variety of painful conditions.

In a study entitled: “Double-blind, placebo-controlled study on the treatment of migraine with PEMF”, Sherman R. et.al. (Orthopedic Surgery Service, Madigan Army Medical Center, Tacoma, WA, USA) evaluated 42 subjects who met the International Headache Society's criteria. During the first month of follow-up with exposure to PEMF, 73% of those receiving actual exposure, reported decreased headaches with 45% a substantial decrease and 14% an excellent decrease. Ten of the 22 subjects who had received actual exposure received 2 additional weeks of actual exposure, after their initial month. All showed decreased headache activity with 50% a substantial decrease and 38% an excellent decrease. Sherman R. et.al concluded that
exposure to PEMF for at least 3 weeks is an effective, short-term intervention for migraine.

Jørgensen W. et al. (International Pain Research Institute, Los Angeles, CA, USA) studied the effects of PEMF on tissue trauma and concluded: “Unusually effective and long-lasting relief of pelvic pain of gynecological origin has been obtained consistently by short exposures of affected areas to the application of a magnetic induction device. Treatments are short, fast-acting, economical, and in many instances have obviated surgery”. Patients with typical cases such as dysmenorrhea, endometriosis, ruptured ovarian cyst, acute lower urinary tract infection, post-operative haematoma, and persistent dyspareunia who had not received analgesic medication were treated with pulsed magnetic field treatment and evaluated. The results showed that 90% of the patients experienced marked, even dramatic relief, while 10% reported less than complete pain.

Hedén P, Pilla AA. (Department of Plastic Surgery, Stockholm, Sweden) studied the Effects of pulsed electromagnetic fields on postoperative pain in breast augmentation patients. She notes: “Postoperative pain may be experienced after breast augmentation surgery despite advances in surgical techniques, which minimize trauma. The use of pharmacological analgesics and narcotics may have undesirable side effects that can add to patient morbidity”. This study was undertaken to determine if PEMF could provide pain control after breast augmentation. Postoperative pain data were obtained and showed that pain had decreased in the treated patient group by nearly a factor of three times that for the control group. Patient use of postoperative pain medication correspondingly also decreased nearly three times faster in the active versus the sham groups. Hedén P, Pilla AA. concluded: “Pulsed electro-magnetic field therapy, adjunctive to standard of care, can provide pain control with a noninvasive modality and reduce morbidity due to pain medication after breast augmentation surgery”.

The Clinical Rheumatology Journal, volume 26-1, January 2007 (Springer London) reported on the Effectiveness of PEMF therapy in lateral epicondylitis by Kaan Uzunca, Murat Birtane and Nurettin Taştekin (Trakya University Medical Faculty, Physical Medicine and Rehabilitation Department, Edirne, Turkey): “We aimed to investigate the efficacy of PEMF in lateral epicondylitis comparing the modality with sham PEMF and local steroid injection”. Patients with lateral epicondylitis were randomly and equally distributed into three groups. One group received PEMF, another sham PEMF, and the third group a corticosteroid + anesthetic agent injection. Pain levels during rest, activity, nighttime, resisted wrist dorsiflexion, and forearm supination were investigated with visual analog scale (VAS). Pain threshold on elbow was determined with an Algometer. All patients were evaluated before treatment, at the third week and the third month. Pain levels were significantly lower in the group treated with the local steroid at the third week but the group treated with PEMF had lower pain during rest, activity and nighttime than the group receiving steroids at the third month.

This study was undertaken to determine if PEMF could provide pain control after breast augmentation surgery. The high percentage of good results obtained and the absolute absence of both negative results and undesired side-effects led to the conclusion that PEMF treatment is an excellent physical therapy in cases of joint diseases.

PEMF Therapy Blocks Pain

PEMF therapy has shown to be effective at reducing pain both in the short-term and in the long-term. The ways by which PEMF therapy relieves pain include pain blocking, decreased inflammation, increased cellular flexibility and increased blood and fluids circulation.

The trans-membrane potential, (“TMP”) is the voltage difference (or electrical potential difference) between the interior and exterior of a cell. Differences in concentration of ions on opposite sides of a cellular membrane produce the TMP. The largest contributions usually come from sodium (Na+) and chloride (Cl-) ions which have high concentrations in the extracellular region, and potassium (K+) ions, which along with large protein anions have high concentrations in the intracellular region.

Opening or closing of ion channels at one point in the membrane produces a local change in the TMP, which causes electric current to flow rapidly to other points in the membrane.
The sodium-potassium pump uses energy derived from ATP to exchange sodium for potassium ions across the membrane.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

The sodium-potassium pump uses energy derived from ATP to exchange sodium for potassium ions across the membrane.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.

The pain signal is chemically transferred across the synaptic gap to chemical receptors on the post-synaptic nerve cell. This all happens in about 1/2000th of a second, as the synaptic gap is only 20 to 50 nm (nano meters) wide. As the pain signal, in chemical form, approaches the post-synaptic cell, the membrane changes and the signal is transferred.

Depolarization.
identical to that currently in clinical use significantly increased endothelial cell proliferation and tubulization, which are both important processes for vessel formation. The ability of PEMF to increase cell proliferation was unique to endothelial cells, which seemed to be the primary target of PEMF stimulation, releasing a protein in a paracrine fashion (or signaling to adjacent cells and other types of cells) to induce changes in neighboring cells and tissues. Since direct stimulation did not produce significant changes in osteoblast proliferation, the ability of PEMF therapy to enhance the healing of complicated fractures is likely the result of increased vascularity rather than a direct effect on osteogenesis as previously believed. The coordinated release of FGF-2 suggests that PEMF therapy may facilitate healing by augmenting the interaction between osteogenesis and blood vessel growth. As such, PEMF therapy may offer distinct advantages as a non-invasive and targeted modality that is able to release several growth factors to achieve therapeutic angiogenesis. The fibroblast and endothelial cells are made to go embryonic due to drastic changes in ionic concentrations in the cells' cytoplasm and therefore the cells' nuclei. These ionic concentrations react with the cell DNA opening up some gene sets and closing down others. It is apparently the rapid onset of a strong-pulsed electric field generated by the pulsed magnetic field, which causes some cell ion gate types to open and be force fed ions by the same electric field. As demonstrated in the following study entitled: "Impulse magnetic-field therapy for erectile dysfunction: a double-blind, placebo-controlled study", increased microcirculation leads to improvements in macro-circulation. This double-blind, placebo-controlled study by Pelka R. Et.al. (Universität der Bundeswehr München, Neubiberg/Munich, Germany) assessed the efficacy of three weeks of PEMF therapy for erectile dysfunction (ED). In the active-treatment group, all efficacy endpoints were significantly improved at study end with 80% reporting increases in intensity and duration of erection, frequency of genital warmth, and general well-being. Only 30% of the placebo group noted some improvement in their sexual activity; 70% had no change. No side effects were reported. PEMF therapy has proven efficacious in increasing the flow of ions and nutrients as well as blood flow. Through the same processes, vital organs such as the liver, kidneys and colon are able to rid themselves of impurities thus detoxifying the body and allowing better organ functionality.

PEMF Increases Cellular Membrane Permeability

As early as 1940, it was suggested that magnetic fields might influence membrane permeability as it affects the TMP and the flow of ions in and out of the cells. It has since been established that magnetic fields can influence ATP (Adenosine Tri-phosphate) production; increase the supply of oxygen and nutrients via the vascular and lymphatic systems; improve the removal of waste via the lymphatic system; and help to re-balance the distribution of ions across the cell membrane. Healthy cells in tissue have a voltage difference between the inner and outer membrane referred to as the membrane resting potential that ranges from -70 to -80 mV. This causes a steady flow of ions through its voltage-depant ion channels. In a damaged cell, the potential is raised and an increased sodium inflow occurs. As a result, interstitial fluid is attracted to the inner cellular space, resulting in swelling and edema. The application of PEMF to damaged cells accelerates the re-establishment of normal potentials (Sansaverino) increasing the rate of healing and reducing swelling. In biology, depolarization is a change in a cell's TMP, making it more positive or less negative. In neurons and some other cells, a large enough depolarization may result in an action potential. Hyperpolarization is the opposite of depolarization, and inhibits the rise of an action potential.

If a cell has a resting potential of -70mV, and the membrane potential rises to -50mV, then the cell has been depolarized. Depolarization is often caused by influx of cations, e.g. Na+ through Na+ channels, or Ca2+ through Ca2+ channels. On the other hand, efflux of K+ through K+ channels inhibits depolarization, as does influx of Cl– (an anion) through Cl– channels. If a cell has K+ or Cl– currents at rest, then inhibition of those currents will also result in a depolarization. As the magnetic field created by PEMF therapy expands through the living tissue, it induces an electron flow, or current in one direction. As it collapses, the direction is reversed. Electrons always flow from a negative (cathode) to a positive (anode) potential. Therefore such induced current polarized to push ions toward the positive outside of the cell membrane are blocked, just as no current will flow when the positive terminals of two batteries are connected together. Conversely, current flowing away from the membrane will pull electrons away from it and cause more electrons or negative ions to pile up on its interior surface, thus increasing the potential across the membrane and driving the TMP up towards a normal, healthy value for that cell.

As the electro-magnetic field pulses temporarily hyperpolarize and depolarize the membrane, the ion channels open and close allowing a more efficient ion exchange, as with the sodium-potassium (Na+, K+) pump, thus increasing cellular oxygenation and nutrition as sodium export stimulates several secondary active transporters.

PEMF Increases Cell Metabolism

In a study on Chronic Fatigue Syndrome and Electromedicine, Thomas Valone, Ph.D., showed that damaged or diseased cells present an abnormally low TMP, about 80% lower than healthy cells. This signifies a greatly reduced metabolism and, in particular, impairment of the electrogenic Na+/ K+ pump activity and, therefore, reduced ATP (Adenosine Tri-Phosphate) production. The Na+/ K+ pump within the membrane forces a ratio of 3Na+ ions out of the cell for every 2K+ ions pumped in for proper metabolism. An impaired Na+/ K+ pump results in edema (cellular water accumulation) and a tendency toward fermentation, a condition known to be favorable toward cancerous activity. French researcher Louis C. Kervran demonstrated that Sodium plus Oxygen plus Energy (ex: magnetic) nuclearily transmutes into Potassium as follows:

\[11 \text{Na}_2 + 8 \text{O}_{16} + \text{energy} = 19 \text{K}_3 \]

This nuclear process is accomplished with low heat, in a low
rate of thermal decomposition, which is the most important and commonly occurring phenomenon of Nuclear Fusion in Biology.

As a result, utilization of oxygen in the cells increases and the body increases production of its own energy supplier (ATP). The organism becomes more stable and efficient; toxins and waste products are more rapidly broken down. The body's natural regulatory mechanisms are reinforced and healing processes accelerated.

Free radical proliferation is linked to pathological changes that cause cellular malfunction or mutation (i.e. cancer) as well as protein degradation. Free radicals also play a large role in causing damage to all cells of the body but particularly that of the immune system. According to studies, free radicals also "deplete cellular energy" by interfering with mitochondrial function and contribute to a shortened lifespan. Cellular energy generation in the mitochondria is both a key source and a key target of oxidative stress in the cells. Seeking an electron to complete the radical, free radicals cause chain reactions as electrons are ripped from molecules, creating another free radical. Antioxidants such as vitamin A, vitamin E, selenium and coenzyme Q10 supply free electrons and are usually prescribed to provide limited relief in counteracting free radical ravages. However, electronic antioxidants produced by PEMF therapy can also satisfy and terminate free radicals by abundantly supplying the key ingredient usually found only in encapsulated antioxidant supplements...the electron (Thomas Valone, Ph.D.).

On the biophysical level, as PEMF therapy increases the circulation of electrons across the membrane, another parallel phenomenon seems to occur: the acceleration of ATP synthesis and of other aspects of the cell's biochemical anabolism. The electrons that are drawn to the inner membrane elevate the TMP and increase the ionic charge on the interior of the cell. In 1976, Nobel Prize winner Dr. Albert Szent-Gyorgi established that structured proteins behave like diodes or rectifiers. A diode passes electricity in only one direction. He proposed that cell membranes can rectify an induced voltage and this rectifying property of cell membranes can cause changes in the ion concentration of the inner and outer surfaces of the cell membrane in such a way as to increase the TMP and effectively stimulate the activity of the Na+/K+ pump. Cell health is directly affected by the health of the Na+/K+ pump, which is directly proportional to the TMP. Based on these biophysical principles, an endogenous high voltage EMF potential of sufficient strength will theoretically stimulate the TMP, normal cell metabolism, the sodium pump, ATP production and healing. This has already been found in the literature: "TMP is proportional to the activity of this pump and thus to the rate of healing." Furthermore, "increases in the TMP have also been found to increase the uptake of amino acids." (Dr. Albert Szent-Gyorgi) Electro-medicine therefore appears to connect to and recharge the storage battery of the TMP. This is important, as increasing the supply of nutrients is also an effective aid to cell repair. This is particularly true in trauma where circulation has been impaired by crushed or severed blood vessels or by the inflammation and swelling that compress capillaries, blocking the flow to both the injured and uninjured cells.

PEMF Increases Energy Storage and Cellular Activity
At the sub-atomic level, as the pulsed fields expand and collapse through a tissue, the protein molecules, such as the cytochromes in the cells' mitochondria, gain electrons and, in doing so, store energy. The diagram below describes the electron transport chain:
Even though the instantaneous peak magnetic energy amplitudes are very high, the average magnetic amplitudes generated by PEMF therapy remain low, the average total energy transmitted to the tissues is not powerful enough to create heat within the cells, nor for the cells' atoms to vibrate much and cause a thermal increase, nor for an electron to jump to a higher orbit and emit heat as it returns to its orbit of origin. There is only sufficient average energy for the electron-spin to be increased, thus, energy gets stored in the cells' mitochondria by converting ADP (Adenosine Di-Phosphate) to ATP molecules more rapidly.

The ATP molecules store and transport the energy that is then used in all the metabolic functions of living cells. Understanding the effects of PEMF therapy at the atomic level requires a basic understanding of Quantum Mechanics that is provided here. Solving the Schrödinger equation for a molecule and determining probable amplitude for its electrons over an infinite number of possible trajectories yields the vibrational states of a molecule. This describes how the quantum state or wave function of a molecule or physical system changes in time. A diatomic molecule, which only involves one vibrational degree of freedom (the stretching of the bond between the electron and the positon) provides a simple description (Atkins et al., 2002).

Quantum mechanical considerations show that during the electronic excitation of a particular molecule at the same orbital state, the energy of an excited triplet state (T1) is lower than that of its corresponding singlet state (S1). In biomolecules, the non-radiative crossing from the state S2 to S1 is generally the dominant mechanism. This crossing between two electronic states of the same spin multiplicity is called internal conversion ("IC") (Atkins et al., 2002). The IC process is then followed by a rapid vibrational relaxation (decrease) where the excess vibrational energy is dissipated into heat, the molecule now ending up at the lowest, zero-point vibrational level of the S1 electronic state. From here, it can return to the ground electronic state S0 by emitting a photon (radiatively). The time-varying magnetic fields associated with PEMF therapy apparently affect electronic states via the intercrossing system ("ISC"), which is an excitation from state Si to Ti, where Ti is the corresponding triplet state (2 electrons are unpaired). The ISC type of crossing is heavily affected by the spin-orbit coupling, which relaxes the spin property by mixing with an orbital character (Szent-Gyorgyi A, 1976; Atkins et al., 2002). The ISC type of crossing leads to phosphorescence rather than fluorescence with radically different heat properties. Heavy metals, molecular oxygen having a triplet ground state, paramagnetic molecules such as hemoglobin, and heavy atoms such as iodine increase the inter-system crossing rate (Prasad, 2003).

In shifting positions around an atomic nucleus, an electron generates energy and emits a magnetic resonance of specific frequency. Thus, the magnetic resonance field frequency of the various body tissues and organs is a product of the individual atomic, molecular and cellular frequencies specific to the molecules that constitute the particular tissue or organ. PEMF therapy therefore confuses the specific inherent magnetic resonance and temporarily modifies it in each atom, molecule, cell, and thus, tissue and organ. From the perspective of biophysics, physiological markers represent a level of "order or disorder" in the magnetic resonance of a normal atom that correlates to internal and external factors. The Pulsed Electro-Magnetic Fields generated by PEMF therapy devices provide sufficient energy to affect the magnetic resonance of the atom as the electron is energized. When a disruption in the magnetic resonance occurs, the magnetic resonance of the electrons at the atomic level also exhibits a change, a phase shift that disturbs and breaks the once orderly pathways of communication that is usually transmitted from atom to molecule, molecule to cell, cell to tissue, and tissue to organ. In doing so, the phase shift influences the physical and chemical characteristics of the physiological markers.

PEMF therapy has proven beneficial in many ways for the various energetic body functions. All of the many types of living cells that make up the tissues and organs of the body are tiny electrochemical units. They are powered by a "battery" that is continually recharged by the cells' metabolic chemistry in a closed loop of biological energy.
PEMF Increases Cellular Membrane Flexibility and Elasticity
A study entitled "Modulation of collagen production in cultured fibroblasts by a low frequency pulsed magnetic field" by Murray J. et al. (Biochim Biophys Acta) shows that the total protein synthesis was increased in confluent cells treated with a pulsed magnetic field for the last 24 h of culture as well as in cells treated for a total of 6 days. However, in 6 day-treated cultures, collagen accumulation was significantly enhanced as compared to total protein, whereas after short-term exposure, collagen production was increased only to the same extent as total protein. These results indicate that a pulsed magnetic field can specifically increase collagen production, the major differentiated function of fibroblasts, possibly by altering cyclic AMP metabolism.

PEMF therapy successfully increases membrane flexibility by increasing the synthesis of collagen, a crucial protein that supports membrane elasticity, within the fibroblasts. In doing so, PEMF therapy increases tissue and muscle flexibility and, therefore, increases range of motion, usually within minutes.

PEMF Stimulates Cellular Communication and Replication
DNA synthesis is linked to pulsed, low intensity magnetic fields (Liboff et al, 1984; Rosch et al, 2004). Proteins are conductors of electricity. When exposed to strong fields, proteins are subject to electrophoresis. The Ribonucleic Acid ("RNA") messengers that are synthesized from a Deoxyribonucleic Acid ("DNA") template during transcription mediate the transfer of genetic information from the cell nucleus to ribosomes in the cytoplasm and serve as a template for protein synthesis.

Since RNA mechanically influences the DNA and encoded proteins influence RNA, the flow of information to and from genes may be linked to changing magnetic fields (Einstein, 1977; Goodman et al, 1983).

Since magnetic fields interact with moving electrical charges and recent studies (Dandliker et al, 1997) show that DNA conducts electrons along the stacked bases within the DNA double helix, electro-magnetic fields may initiate transcription of the precursor mRNA by accelerating electrons moving within the DNA helix (McLean et al, 2003).

PEMF Increases Cellular Genesis (Cellular Growth and Repair)
The many intra and inter cellular processes and activity stimulated by PEMF therapy lead to faster cellular and tissue regeneration. This fact is shown by the results of many studies on a variety of tissues, including bones, spine, cartilage, intestines, blood vessels, nerves, brain, and muscles.

In December 2004, the Swiss Medical Tribune stated that PEMF therapy provided: "Improvement of blood circulation, relief from pain, improvement of bone healing and the stimulation of nerve cells. Not only is the PEMF therapy effective in disease condition: it is an excellent means of preventing stress, assisting regeneration and recovery after sports exertion... Through metabolic activation and blood circulation more nutrients and oxygen are available to muscle cells, less damage is experienced, and efficiency is improved."

- PEMF and the spine
In a long-term study entitled: "Spine fusion for discogenic low back pain: outcome in patients treated with or without pulsed electromagnetic field stimulation", Marks RA. (Richardson Orthopaedic Surgery, TX, USA) randomly selected 61 patients who underwent lumbar fusion surgeries for discogenic low back pain between 1987 and 1994 and had failed to respond to preoperative conservative treatments. Average follow-up time was 15.6 months postoperatively. Fusion succeeded in 97.6% of the 42 patients who received PEMF stimulation for only 52.6% of the 19 patients who did not receive electrical stimulation of any kind. A similar study by Richard A. Silver, M.D. (Tucson Orthopaedic & Fracture Surgery Associates, Ltd., Tucson, AZ, USA) with 85 patients who had undergone surgery of posterior lumbar interbody fusion (PLIF) and had risk factors associated with a poor prognosis for healing, including smoking, prior back surgery, multiple spinal levels fused, diabetes mellitus, and obesity, roentgenographic examination and clinical evidence indicated that all but two patients achieved successful fusion. Of the 83 patients with successful spinal fusion, 29 (34.9%) were assessed as "excellent," 45 (54.2%) as "good," 3 (3.6%) as "fair", and 6 (7.2%) as "poor". Adjunctive treatment with PEMF appeared effective in promoting spinal fusion following PLIF procedures across all patient subgroups.

- PEMF on bone and cartilage
In a study entitled: "Modification of biological behavior of cells by Pulsing Electro-magnetic fields", 20 subjects of ages between 57 and 75 years with decreased bone mineral density as defined by a bone densitometer, were treated with PEMF therapy during a period of 12 weeks by Ben Philipson, Curatrionic Ltd. (University of Hawaii School of Medicine, HI, USA). After a period of 6 weeks, the bone density rose in those patients with an average of 5.6%. Properly applied pulsed electromagnetic fields, if scaled for whole body use, has clear clinical benefits in the treatment of bone diseases and related pain, often caused by micro-fractures in vertebrae. In addition, joint pain caused by worn out cartilage layers can be treated successfully, through electromagnetic stimulation. PEMF application promotes bone union by electric current induction, which changes the permeability of cell membrane allowing more ions across, affects the activity of intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), and accelerates osteoblast differentiation by activation of p38 phosphorylation. PEMF stimulation also increases the partial oxygen pressure and calcium transport. Repair and growth of cartilage is thus stimulated, preventing grinding of the bones.

- PEMF and tendonitis
The department of rheumatology at Addenbrookes Hospital carried out investigations into the use of PMFT for the treatment of persistent rotator cuff tendonitis. PEMF treatment was applied to patients who had symptoms refractory to steroid injection and other conventional treatments. At the end of the trial, 65% of these were
symptom free, with 18% of the remainder being greatly improved.

PEMF and intestines
An experimental study was designed to investigate the effect of electromagnetic field therapy on intestinal healing and to compare small and large intestinal anastomoses, or connections between the loops of the intestines, by Nayci A. et.al. Cakmak M, Aksoyek S, Renda N, Yucesan S. (Department of Pediatric Surgery, Mersin University Medical Faculty, Turkey). The study demonstrated that electromagnetic field stimulation provided a significant gain in anastomotic healing in both small and large intestine, and a significant increase in both biochemical and mechanical parameters.

PEMF and the brain
A 4-week double-blind, placebo-controlled study conducted by Uni der Bundeswehr (Munich, Germany) assessed the efficacy of PEMF Therapy for Insomnia. One hundred one patients were randomly assigned to either active treatment (n = 50) or placebo (n = 51) and allocated to one of three diagnostic groups: sleep latency; interrupted sleep, or nightmares. The results showed 70% (n = 34) of the patients given active PEMF treatment experienced substantial or even complete relief of their complaints; 24% (n = 12) reported slight improvement; 6% (n = 5) noted a slight improvement. Only one placebo patient (2%) had very clear relief; 49% (n = 23) reported slight or clear improvement; and 49% (n = 23) saw no change in their symptoms. No adverse effects of treatment were reported.

Stunning results were obtained in a study entitled "Protection against focal cerebral ischemia following exposure to a pulsed electro-magnetic field". Grant G. et.al. of the Department of Neurosurgery, Stanford University, CA, USA stated: "There is evidence that electro-magnetic stimulation may accelerate the healing of tissue damage following ischemia. Exposure to pulsed electromagnetic field attenuated cortical ischemia edema on MRI at the most anterior coronal level by 65%.

On histological examination, PEMF exposure reduced ischemic neuronal damage in this same cortical area by 69% and by 43% in the striatum. Preliminary data suggest that exposure to a PEMF of short duration may have implications for the treatment of acute stroke".

PEMF and multiple sclerosis
At the Biologic Effects of Light 1998 Symposium, Richards TL, Acosta-Urquidi, J. explains the effects of pulsing magnetic field on brain electrical activity in multiple sclerosis: "Multiple sclerosis (MS) is a disease of the central nervous system. Clinical symptoms include central fatigue, impaired bladder control, muscle weakness, sensory deficits, impaired cognition, and others. The cause of MS is unknown, but from histologic, immunologic, and radiologic studies, we know that there are demyelinated brain lesions (visible on MRI) that contain immune cells such as macrophages and T-cells (visible on microscopic analysis of brain sections). Recently, a histologic study has also shown that widespread axonal damage occurs in MS along with demyelination. What is the possible connection between MS and bio-electromagnetic fields? We recently published a review entitled "Bio-electromagnetic applications for multiple sclerosis," which examined several scientific studies that demonstrated the effects of electromagnetic fields on nerve regeneration, brain electrical activity (electro-encephalography), neurochemistry, and immune system components. All of these effects are important for disease pathology and clinical symptoms in MS".

He referred to a study that evaluated electro-encephalograms (EEG) in response to photic stimulation with flashing lights before and after PEMF exposure. The evidence showed a significant increase in alpha EEG magnitude that was greater in the active group compared to the placebo group demonstrating increased activity.

Richards T. et.al. (Dep. Radiology, University of Washington, WA, USA) confirms the above conclusion in a double-blind study to measure the clinical and sub-clinical effects of an alternative medicine electromagnetic device on disease activity in multiple sclerosis. The MS patients were exposed to a magnetic pulsing device that was either active (PEMF) or inactive (placebo) for two months. Each MS patient received a set of tests to evaluate MS disease status before and after wearing the device. The tests included a clinical rating (Kurtzke, EDSS), patient-reported performance scales (PS), and quantitative electro-encephalography (QEEG) during a language task. Although there was no significant change between pre-treatment and post-treatment in the EDSS scale, there was a significant improvement in the PS combined rating for bladder control, cognitive function, fatigue level, mobility, spasticity, and vision. There was also a significant change between pre-treatment and post-treatment in alpha EEG magnitude during the language task. Richards T. et.al. stated: "we have demonstrated a statistically significant effect of the magnetic pulsing device on patient performance scales and on alpha EEG magnitude during a language task".

In "Treatment with AC pulsed electromagnetic fields normalizes the latency of the visual evoked response in a multiple sclerosis patient with optic atrophy", Sandyk R. (Department of Neuroscience at the Institute for Biomedical Engineering and Rehabilitation Services of Touro College, Dix Hills, NY, USA) explains: "Visual evoked response (VER) studies have been utilized as supportive information for the diagnosis of MS and may be useful in objectively monitoring the effects of various therapeutic modalities. Delayed latency of the VER, which reflects slowed impulse transmission in the optic pathways, is the most characteristic abnormality associated with the disease. Brief transcranial applications of AC PEMFs in the picotesla flux density are efficacious in the symptomatic treatment of MS and may also reestablish impulse transmission in the optic pathways. A 36 year old man developed an attack of right sided optic neuritis at the age of 30. On presentation he had blurring of vision with reduced acuity on the right and fundoscopic examination revealed pallor of the optic disc. A checkerboard pattern reversal VER showed a delayed latency to right eye stimulation (P100 = 132 ms; normal range: 95-115 ms). After he received two successive applications of AC PEMFs of 7.5
picotesla flux density each of 20 minutes duration administered transcranially, there was a dramatic improvement in vision and the VER latency reverted to normal (P100=107 ms). The rapid improvement in vision coupled with the normalization of the VER latency despite the presence of optic atrophy, which reflects chronic demyelization of the optic nerve, cannot be explained on the basis of partial or full reformation of myelin. It is proposed that in MS synaptic neurotransmitter deficiency is associated with the visual impairment and delayed VER latency following optic neuritis and that the recovery of the VER latency by treatment with PEMFs is related to enhancement of synaptic neurotransmitter functions in the retina and central optic pathways. Recovery of the VER latency in MS patients may have important implications with respect to the treatment of visual impairment and prevention of visual loss. Specifically, repeated applications of PEMFs may maintain impulse transmission in the optic nerve and thus potentially sustain its viability*.

Sandyk R. summarizes recent clinical work on the therapeutic effects of AC PEMF in MS: “Multiple sclerosis is the third most common cause of severe disability in patients between the ages of 15 and 50 years. The cause of the disease and its pathogenesis remain unknown. The last 20 years have seen only meager advances in the development of effective treatments for the disease. No specific treatment modality can cure the disease or alter its long-term course and eventual outcome. Moreover, there are no agents or treatments that will restore premorbid neuronal function. A host of biological phenomena associated with the disease involving interactions among genetic, environmental, immunologic, and hormonal factors, cannot be explained on the basis of demyelization alone and, therefore, require refocusing attention on alternative explanations, one of which implicates the pineal gland as pivotal. The pineal gland functions as a magneto-receptor organ. This biological property of the gland provided the impetus for the development of a novel and highly effective therapeutic modality, which involves transcranial applications of alternating current (AC) PEMF flux density”.

Summary
As evidenced by the many studies cited herein, it is clear that PEMF treatment stimulates many aspects of cellular activity and, in doing so, promotes neural regeneration and brain function, improves neuro-muscular function and general health.

Beyond the complex mechanisms by which it operates remain the health benefits associated with PEMF therapy. PEMF therapy increases blood circulation in and around damaged tissue, and effectively helps damaged cells heal. Generally, PEMF therapy produces one main effect; it stimulates the cell metabolism by increasing the flow of electrons and ions across the cell membrane. This effect involves a chain of processes in the human body, which leads to the improvement of health without side effects including:
- Improved micro-circulation
- Increased supply of oxygen, ions and nutrients to cells
- Increased partial oxygen pressure
- Increased ATP production by excitations of electrons
- Stimulation of RNA and DNA production
- Accelerated protein bio-synthesis by electron and energy transfer
- Anti-oxidation regulation with increased circulation of available electrons
- Increased calcium transport and absorption for stronger bones, joints and muscles
- Enhanced cellular and tissue elasticity with increased collagen production
- Increased cellular genesis promoting bone, cartilage, tendon and soft tissue growth
- Stimulation of cellular repair mechanisms
- Enhanced macro circulation: by mechanically de-clumping blood cells, alternately dilating and constricting vessels, and through angiogenesis, the growth of new blood vessels
- Accelerated detoxification of cells and organs
- Decreased swelling, inflammation and pain
- Boosting of the immune system, the body’s defenses, by improving the rolling and adhesion behavior of white blood cells
- Supporting the body’s internal self-regulating mechanisms by activating cellular and molecular processes.

PEMF helps the natural body healing processes by delivering a non-invasive form of repetitive electrical stimulation that requires no direct contact with the skin surface. Magnetic fields have been shown to affect biologic processes and be effective in a wide range of medical conditions. PEMF therapy has proven beneficial in stimulating cellular metabolism, blood and fluids circulation, tissue regeneration and immune system response. PEMF treatment is effective at increasing bone formation and bone density, healing fractures and osteotomies, recovery from wounds and trauma, graft and post-surgical behavior, recovery from myocardial and brain ischemia (heart attack and stroke), tendonitis, osteoarthritis, and impaired neural function or spasticity from central nervous system diseases such as multiple sclerosis and spinal cord damage. PEMF stimulation offers a safer and more comfortable alternative for urinary incontinence to prior treatments. PEMF therapy improves sports performance, and simply helps to maintain good health.

PEMF therapy stimulates muscles, connective tissues, intestines, tendons and cartilage, the brain and peripheral nerve sites. PEMF therapy promotes healing and a return to higher activity levels. Functions that were lost begin to recover. Extensive research has been carried out to determine the mechanism by which this occurs but, for the physiotherapist presented with a wide range of clinical problems, PEMF therapy is an invaluable aid to the clinic.

PEMF therapy leaves you feeling relaxed, energized and with a sense of well-being.